Home
Class 12
MATHS
[X" and "Y" are two sets and "f:X rarr Y...

[X" and "Y" are two sets and "f:X rarr Y" .If "f(c)=y;c in X,],[y sub Y" and "{f^(-1)(d)=x;d sub Y,x sub X}" ,then the true "],[" statement is "],[[" (a) "f(f^(-1)(b))=b," (b) "f^(-1)(f(a))=a],[" (c) "f(f^(-1)(b))=b,b sub y," (d) "f'(f(a))=a,a sub x]]

Promotional Banner

Similar Questions

Explore conceptually related problems

X and Y are two sets and f:X rarr Y If {f(c)=y;c sub X,y sub Y} and {f^(-1)(d)=x;d sub Y,x sub X, then the true statement is (a)f(f^(-1)(b))=b (b)f ^(-1)(f(a))=a(c)f(f^(-1)(b))=b,b sub y(d)f^(-1)(f(a))=a,a sub x

X and Y are two sets and f: X->Y If {f(c)=y; c subX, y subY} and {f^(-1)(d)=x;d subY,x sub X , then the true statement is (a) f(f^(-1)(b))=b (b) f^(-1)(f(a))=a (c) f(f^(-1)(b))=b, b sub y (d) f^(-1)(f(a))=a, a sub x

X and Y are two sets and f: X->Y If {f(c)=y; c subX, y subY} and {f^(-1)(d)=x;d subY,x sub X , then the true statement is (a) f(f^(-1)(b))=b (b) f^(-1)(f(a))=a (c) f(f^(-1)(b))=b, b sub y (d) f^(-1)(f(a))=a, a sub x

X and Y are two sets and f: X->Y If {f(c)=y; c subX, y subY} and {f^(-1)(d)=x;d subY,x sub X , then the true statement is (a) f(f^(-1)(b))=b (b) f^(-1)(f(a))=a (c) f(f^(-1)(b))=b, b sub y (d) f^(-1)(f(a))=a, a sub x

If X and Y are two non-empty sets where f:X rarr Y ,is function is defined such that f(c)={f(x):x in C} for C sube X and f^(-1)(D)={x:f(x)in D} for D sube Y ,for any A sube Y and B sube Y, then

For any sets X and Y prove that P(X) cup P(Y) sub P(X cup Y)

Let f(x)=|x-1|dot Then (a) f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c) f(|x|)=|f(x)| (d) none of these

Let f(x)=|x-1|dot Then (a) f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c) f(|x|)=|f(x)| (d) none of these

Let f(x)=|x-1|dot Then (a) f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c) f(|x|)=|f(x)| (d) none of these

Let f(x)=|x-1|dot Then (a) f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c) f(|x|)-|f(x)| (d) none of these