Home
Class 12
MATHS
" 8."e^(sin x)-e^(-sin x)=4" then find t...

" 8."e^(sin x)-e^(-sin x)=4" then find the number of real solutions."

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation e^(sin x)-e^(-sin x)-4=0 has (A) infinite number of real roots (B) no real roots (C) exactly one real root (D) exactly four real roots

Solve e^(sin x)-e^(-sin x) - 4 = 0 .

Solve e^(sin x)-e^(-sin x) - 4 = 0 .

Solve e^(sin x)-e^(-sin x) - 4 = 0 .

e^(4x)+2e^(3x)-e^x-6=0 find the number of solutions

If sin^(-1)(e^(x))+cos^(-1)(x^(2))=(pi)/(2), then find the number of solutions of this equation

Show that the equation e^(sinx)-e^(-sin x)-4=0 has no real solution.

The equation e^(sin x)-e^(-sin x)-4=0 has

The equation e^(sin x)-e^(-sin x)-4=0 has