Home
Class 11
MATHS
Prove cos x < ( sin x)/x < 1 by sandwich...

Prove `cos x < ( sin x)/x < 1` by sandwich theorem

Text Solution

Verified by Experts

`f(x)=sinx-xcosx`
`f'(x)=cosx-cosx+xsinx`
`=xsinx`
for x`in (0,pi/2)`
`f'(x)>0`
`f(x)>0`
sinx>xcosx
`sinx/x>cosx-(1)`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove : cos3x=4cos^(3)x-3cosx

Prove |{:(cos(x-a),cos(x+a),cosx),(sin(x+a),sin(x-a),sinx),(cosa tan x,cosa cotx,cosec2x):}|=0

To prove (cos5x+cos4x)/(1-2cos3x) = -cos2x-cosx

To prove (cos5x+cos4x)/(1-2cos3x)=-cos2x-cos x

Expand cos(x+y) and hence prove cos2x=1-2sin^2x

Prove : 3cos^(-1)x=cos^(-1)(4x^(3)-3x),x in[1/2,1]

Prove that cos x+cos((2 pi)/(3)-x)+cos((2 pi)/(3)+x)=0

Prove that cos (x + y) = cos x cos y-sin x sin y

Prove that cos4x = 2cos^2(2x) - 1

Prove : int (cos x - cos 2x)/(1-cosx) dx = x + 2 sin x + c