Home
Class 11
MATHS
If a1 +a2 + a3+a4+a5...+an for all aigt ...

If `a_1 +a_2 + a_3+a_4+a_5...+a_n` for all `a_igt 0`,`i=1,2,3...n`. Then the maximum value of `a_1^2a_2a_3a_4a_5..a_n` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_1+a_2+a_3+......+a_n=1 AA a_i > 0, i=1,2,3,......,n , then find the maximum value of a_1 a_2 a_3 a_4 a_5......a_n .

If a_1+a_2+a_3+......+a_n=1 AA a_i > 0, i=1,2,3,......,n , then find the maximum value of a_1 a_2 a_3 a_4 a_5......a_n .

If a_1+a_2+a_3+......+a_n=1 AA a_1 > 0, i=1,2,3,......,n, then find the maximum value of a_1 a_2 a_3 a_4 a_5......a_n.

If a_1+a_2+a_3+...+a_n=1AAa_i>0,i=1,2,3, ,n , then find the maximum value of a_1 a_2a_3a_4a_5.... a_n.

If a_1, a_2, a_3..... a_n in R^+ and a_1.a_2.a_3.........a_n = 1, then minimum value of (1+a_1 + a_1^2) (1 + a_2 + a_2^2)(1 + a_3 + a_3^2)........(1+ a_n + a_n^2) is equal to :-

If a_i>0, i=1, 2, 3,..., n then prove that a_1/a_2+a_2/a_3+a_3/a_4+...+a_(n-1)/a_n+a_n/a_1gen .

If a_n>1 for all n in N then log_(a_2) a_1+log_(a_3) a_2+.....log_(a_1)a_n has the minimum value of