Home
Class 12
MATHS
The value of int1^e((tan^(-1)x)/x+(logx)...

The value of `int_1^e((tan^(-1)x)/x+(logx)/(1+x^2))dxi s` `tane` (b) `tan^(-1)e` `tan^(-1)(1/e)` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_1^e((tan^(-1)x)/x+(logx)/(1+x^2))dx ,is (a) tane (b) tan^(-1)e (c) tan^(-1)(1/e) (d) none of these

The value of int_1^e((tan^(-1)x)/x+(logx)/(1+x^2))dx ,is (a) tane (b) tan^(-1)e (c) tan^(-1)(1/e) (d) none of these

The value of int_(1)^(e)((tan^(-1)x)/(x)+(log x)/(1+x^(2)))dx is tan e(b)tan^(-1)e tan^(-1)((1)/(e))(d) none of these

e^(tan^(-1)x)log(tan x)

The value of int (e^(tan^(-1)x)dx)/(1+x^(2)) is -

The value of int e^(tan-1)x((1+x+x^(2))/(1+x^(2)))dx

int(e^(ln tan^(-1)x))/(1+x^(2))dx

int e^(tan^(-1)x)((1)/(1+x^(2)))dx=

int(e^(m tan^(-1)x))/(1+x^(2))dx