Home
Class 12
MATHS
[" EASY "],[" Emes "3],[" Exply Examples...

[" EASY "],[" Emes "3],[" Exply Examples If "x sqrt(1+y)+y sqrt(1+x)=0," prove that "(dy)/(dx)=(-1)/((1+x)^(2))]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x sqrt(1+y)+y sqrt(1+x)=0, prove that (dy)/(dx)=-(1)/((x+1)^(2))

If x sqrt(1+y)+y sqrt(1+x)=0, then prove that (dy)/(dx)=-(1+x)^(-2)

if x sqrt(1+y)+ysqrt(1+x)=0 prove that (dy/dx)=-1/(1+x)^2

If y=log(sqrt(x)+sqrt(1/x)), prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y=log(sqrt(x)+(1)/(sqrt(x))), prove that (dy)/(dx)=(x-1)/(2x(x+1))

x sqrt(1+y)+y sqrt(1+x)=0 for, for,(dy)/(dx)=-(1)/((1+x)^(2))

If quad sqrt(1+y)+y sqrt(1+x)0,-1

If x sqrt(1+y)+y sqrt(1+x)=0, find (dy)/(dx)* To prove (dy)/(dx)=-(1)/((1+x)^(2))

If y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))

If y=sqrt(x)+1/(sqrt(x)) , prove that 2x(dy)/(dx)=sqrt(x)-1/(sqrt(x))