Home
Class 11
MATHS
the value of sum(n=1)^oo (1+3+5+...(2n-...

the value of `sum_(n=1)^oo (1+3+5+...(2n-1))/(1^3+2^3+3^3....+n^3)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(n=1)^(oo)(4n-2)/(3^(n))

If S=sum_(n=2)^oo (3n^2+1)/(n^2-1)^3 then 9/S=

Find the value of S_(n)=sum_(n=1)^(oo)(3^(n)*5^(n))/((5^(n)-3^(n))(5^(n-1)-3^(n+1))) and hence s_(oo)

The value of sum_(n=3)^(oo)(1)/(n^(5) - 5n^(3) +4 n) is equal to -

The value of sum_(n=3)^(oo)(1)/(n^(5) - 5n^(3) +4 n) is equal to - (a) (1)/(120) (b) (1 )/(96) (c) (1)/(24) (d) (1)/(144)

The value of cot sum_(n=1)^(oo)cot^(-1)((2)/(n^(2))sum_(n=1)^(n)k^(3))

Value of lim_ (n rarr oo) (1 ^ (3) + 2 ^ (3) + 3 ^ (3) ... + n ^ (3)) / (n ^ (4))

The sum sum_(n=1)^oo tan^(-1)(3/(n^2+n-1)) is equal to

sum_(0)^(oo)(1)/((3n+1)(3n+2))

The value of sum_(n=1)^(N) U_n=|{:(n,1,5),(n^2,2N+1,2N+1),(n^3,3N^2,3N):}| is