Home
Class 12
MATHS
If (sinx)^y=x+y , prove that (dy)/(dx)=(...

If `(sinx)^y=x+y` , prove that `(dy)/(dx)=(1-(x+y)ycotx)/((x+y)logsinx-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (sin x)^(y)=x+y, prove that(dy)/(dx)=(1-(x+y)y cot x)/((x+y)log sin x-1)

If (sin x)^(y)=x+y, prove that (dy)/(dx)=(1-(x+y)y cot x)/((x+y)log sin x-1)

If (sin"x")^y=x+y ,p rov et h a t(dy)/(dx)=(1-(x+y)ycotx)/((x+y)logsinx-1)

If (sin"x")^y=(cos"y")^x , prove that (dy)/(dx)=(logcosy-ycotx)/(logsinx+xtany)

If (sinx)^y=(cosy)^x , prove that (dy)/(dx)=(logcosy-ycotx)/(logsinx+xtany)

If ye^(y)=x , prove that, (dy)/(dx)=(y)/(x(1+y)) .

If ye^y=x prove that (dy)/(dx)= y/(x(1+y))

If (sinx)^y=(cosy)^x ,p rov et h a t(dy)/(dx)=(logcosy-ycotx)/(logsinx+xtany)

If y,=x sin y, prove that (dy)/(dx),=(y)/(x(1-x cos y))

If sec((x+y)/(x-y))=a, prove that (dy)/(dx)=(y)/(x)