Home
Class 11
MATHS
The minimum value of n for which (2^2+4^...

The minimum value of n for which `(2^2+4^2+6^2+....(2n)^2)/(1^2+3^2+5^2+...+(2n-1)^2)lt 1.01` is

Promotional Banner

Similar Questions

Explore conceptually related problems

(2^(2)+4^(2)+6^(2)+...+(2n)^(2))/(1^(2)+3^(3)+5^(2) +...+(2n-1)^(2))rarr exceed 1.01i

For (2^(2)+4^(2)+6^(2)+.......+(2n)^(2))/(1^(2)+3^(2)+......+(2n-1)^(2)) to exceed 1.01, the maximum value of n is-

Lt_(n rarr oo)(1.3.5...(2n-1))/(2.4.6...(2n))=

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

The value of lim_(nrarroo)(1^(2)-2^(2)+3^(2)-4^(2)+5^(2)….+(2n+1)^(2))/(n^(2)) is equal to

The value of lim_(nrarroo)(1^(2)-2^(2)+3^(2)-4^(2)+5^(2)….+(2n+1)^(2))/(n^(2)) is equal to

The value of 2^(n)n!(1.3.5.....(2n-1)) is