Home
Class 12
MATHS
If e^x+e^y=e^(x+y) then prove that dy/dx...

If `e^x+e^y=e^(x+y)` then prove that `dy/dx =- e^(y-x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If e^x + e^y = e^(x+y) , prove that dy/dx = -e^(y-x)

If e^x+e^y=e^(x+y) , prove that dy/dx=-e^(y-x)

If e^x + e^y = e^(x+y) , then show that dy/dx = - e^(y-x)

If e^x + e^y = e^(x+y) , show that dy/dx = - e^(y-x)

If e^x + e^y = e^(x +y) , prove that (dy)/(dx) = (e^x (e^y - 1))/(e^y (e^x - 1))

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)=-(e^x(e^y-1))/(e^y(e^x-1))

If e^(x) + e^(y) = e^(x + y) , then prove that (dy)/(dx) = (e^(x)(e^(y) - 1))/(e^(y)(e^(x) - 1)) or (dy)/(dx) + e^(y - x) = 0 .

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)=-(e^x(e^y-1))/(e^y(e^x-1)) or, (dy)/(dx)+e^(y-x)=0

e^(x) + e^(y) = e^(x+ y) then prove that, (dy)/(dx) + (e^(x) (e^(y)-1))/(e^(y) (e^(x)-1))=0

If e^(x)+e^(y)=e^(x+y) , prove that (dy)/(dx)+e^(y-x)=0 .