Home
Class 12
MATHS
The value of lim(n->oo)((1.5)^n + [(1 + ...

The value of `lim(n->oo)((1.5)^n + [(1 + 0.0001)^(10000)]^n)^(1/n)`, where [.] denotes the greatest integer function is:

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim(n rarr oo)((1.5)^(n)+[(1+0.0001)^(10000)]^(n)) where [.] denotes the greatest integer function is:

The value of lim_(n->oo) n^(1/n)

f(x) = lim_(n->oo) sin^(2n)(pix)+[x+1/2] , where [.] denotes the greatest integer function, is

The value of lim_(nto oo)(sqrt(n^(2)+n+1)-[sqrt(n^(2)+n+1)]) where [.] denotes the greatest integer function is

The value of lim_(nto oo)(sqrt(n^(2)+n+1)-[sqrt(n^(2)+n+1)]) where [.] denotes the greatest integer function is

Evaluate lim_(n->oo) [sum_(r=1)^n(1/2) ^r] , where [.] denotes the greatest integer function.

f(x)=lim_(n rarr oo)sin^(2n)(pi x)+[x+(1)/(2)], where [.] denotes the greatest integer function,is

Lim_(n->oo)(sqrt(n^2+n+1)-[n^2+n+1])(n in I) where [ ] denote the greatest integer functionis is

Evaluate lim_(n rarr oo)[sum_(r=1)^(n)(1)/(2^(r))], where [.] denotes the greatest integer function.