Home
Class 9
MATHS
[[4,-1,0],[-7,2,1]]...

[[4,-1,0],[-7,2,1]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Multiplicative inverse of the matrix [[2,1],[7,4]] is (i) [[4,-1],[-7,-2]] (ii) [[-4,-1],[7,-2]] (iii) [[4,-1],[7,2]] (iv) [[4,-1],[-7,2]]

Multiplicative inverse of the matrix [[2,1],[7,4]] is (i) [[4,-1],[-7,-2]] (ii) [[-4,-1],[7,-2]] (iii) [[4,-1],[7,2]] (iv) [[4,-1],[-7,2]]

Multiplicative inverse of the matrix [[2,1],[7,4]] is (i) [[4,-1],[-7,-2]] (ii) [[-4,-1],[7,-2]] (iii) [[4,-1],[7,2]] (iv) [[4,-1],[-7,2]]

Multiplicative inverse of the matrix [[2,1],[7,4]] is (i) [[4,-1],[-7,-2]] (ii) [[-4,-1],[7,-2]] (iii) [[4,-1],[7,2]] (iv) [[4,-1],[-7,2]]

If A=[[-1,0],[4,2],[0,-1]] then find (-7) A.

find the rank of [[2,-4,3,-1],[1,-2,-1,-4],[0,1,-1,3],[4,-7,4,-4]]

if A = [[3,9,0],[1,8,-2]] and B = [[4,0,2],[7,1,4]] find A+B and A-B?

If A=[[3,9,0],[1,8,-2]] and B=[[4,0,2],[7,1,4]] ,find A+B and A-B .

If A=[[4, -1], [-1, k]] such that A^(2)-6A+7I=0 and k=

If A= [[7,2],[-1,4]] and I= [[1,0],[0,1]] show that (A-5I) (A-6I)=0