Home
Class 11
MATHS
" In The number of "x in[0,2 pi]" for wh...

" In The number of "x in[0,2 pi]" for which "sqrt(2sin^(4)x+18cos^(2)x)-sqrt(2cos^(4)x+18sin^(2)x)=1" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of x in [0,2pi] for which sqrt(2sin^4 x+18cos^2 x)-sqrt(2cos^4 x+18sin^2 x)=1 is

The number of x in [0, 2pi] for which |sqrt(2"sin"^(4)x + 18"cos"^(2) x) -sqrt(2"cos"^(4)x + 18"sin"^(2)x)| = 1, is

The number of x in [0, 2pi] for which |sqrt(2"sin"^(4)x + 18"cos"^(2) x) -sqrt(2"cos"^(4)x + 18"sin"^(2)x)| = 1, is

Prove that sqrt(sin^4x+4cos^2x)-sqrt(cos^4x+4sin^2x)=cos2xdot

Prove that sqrt(sin^4x+4cos^2x)-sqrt(cos^4x+4sin^2x)=cos2xdot

Prove that sqrt(sin^4x+4cos^2x)-sqrt(cos^4x+4sin^2x)=cos2xdot

Prove that sqrt(sin^4x+4cos^2x)-sqrt(cos^4x+4sin^2x)=cos2xdot