Home
Class 12
MATHS
If y = 1/(3x^3) then prove that 3y+(x\ d...

If `y = 1/(3x^3)` then prove that `3y+(x\ dy)/dx = 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(1)/(3x^(3)) then prove that 3y+(x backslash dy)/(dx)=0

if y=x^3 then prove that xdy/dx-3y=0

If x+y=t+(1)/(t) and x^(3)+y^(3)=t^(3)+(1)/(t^(3)) then prove that (dy)/(dx)=-(1)/(x^(2))

If x+y=t+(1)/(t) and x^(3)+y^(3)=t^(3)+(1)/(t^(3)) then prove that (dy)/(dx)=-(1)/(x^(2))

If =3e^(2x)+2e^(3x) then prove that (d^(2)y)/(dx^(2))-5(dy)/(dx)+6y=0

If y = sin^(-1) (3x -4x^(3)) " then " (dy)/(dx) = ?

If y = sqrt(1+sqrt(1+x^4)) , prove that y(y^2-1)dy/dx = x^3

If sqrt(1 - x^6) + sqrt(1 - y^6) = a^3 (x^3 - y^3) prove that (dy)/(dx) = (x^2 sqrt(1 - y^6))/(y^2 sqrt(1 - x^6))

If y=(x)/(sqrt(1+x^(2))) , prove that, x^(3)(dy)/(dx)=y^(3) .

If y=(1)/(3x-1) , then the value of [(dy)/(dx)]_(x=0) is -