Home
Class 10
MATHS
[" 52"a(x^(2)+1)-x(a^(2)+1)=0],[" 53."x^...

[" 52"a(x^(2)+1)-x(a^(2)+1)=0],[" 53."x^(2)-x-a(a+1)=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let x=1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+alpha))))). Which of the following is correct? x^(2)+x+1=0 (b) x^(2)-x+1=0( c) x^(2)+x-1=0 (d) x^(2)-x-1=0

If alpha,beta are the roots of the equation x^(2)+x+1=0 , then the equation whose roots are alpha^(22)andbeta^(19) , is a) x^(2)-x+1=0 b) x^(2)+x+1=0 c) x^(2)+x-1=0 d) x^(2)-x-1=0

lim_(x rarr0)((5x^(2)+1)/(3x^(2)+1))^(1/x^(2))

lim_(x rarr0)((1+5x^(2))/(1+3x^(2)))^(1/x^(2))=

f (x) = {{:((|x^(2)- x|)/(x^(2) - x),xne 0"," 1),(1",", x = 0),(-1",", x = 0 ):} is continuose for all :

f (x) = {{:((|x^(2)- x|)/(x^(2) - x),xne 0"," 1),(1",", x = 0),(-1",", x = 0 ):} is continuose for all :

If x^(2)+x+1=0 then the absolute value of (x+(1)/(x))+(x^(2)+(1)/(x^(2)))+(x^(3)+(1)/(x^(3)))+...(x^(52)+(1)/(x^(52))) equals to

Solve equation : 9(x^(2)+(1)/(x^(2)))-9(x+(1)/(x))-52=0

Let alpha and beta be the roots of the equation x^2+x+1=0 . The equation whose roots are alpha^29, beta^17 is (A) x^2-x+1=0 (B) x^2+x+1=0 (C) x^2-x-1=0 (D) x^2+x-1=0