Home
Class 12
PHYSICS
Find the kinetic energy of the alpha - p...

Find the kinetic energy of the `alpha` - particle emitted in the decay `^238 Pu rarr ^234 U + alpha`. The atomic masses needed are as following:
`^238 Pu 238.04955 u`
`^234 U 234.04095 u`
`^4 He 4.002603 u`.
Neglect any recoil of the residual nucleus.

Text Solution

Verified by Experts

Using energy conservation,
`m(^238 Pu) c^2 = m(^234 U) - m (^4 He) c^2 + K`
or, `K = [m(^238 Pu) - m (^234 U) - m (^4 He)] c^2`
`= [238.04955 u - 234.04095 u - 4.002603 u] (931 MeV u^(-1)`
`= 5.58 MeV`.
Promotional Banner

Topper's Solved these Questions

  • THE NUCLEOUS

    HC VERMA|Exercise Short Answer|12 Videos
  • THE NUCLEOUS

    HC VERMA|Exercise Objective 1|19 Videos
  • THE NUCLEOUS

    HC VERMA|Exercise Exercises|53 Videos
  • SPEED OF LIGHT

    HC VERMA|Exercise Exercises|3 Videos
  • THE SPECIAL THEORY OF RELATIVITY

    HC VERMA|Exercise Exercise|1 Videos

Similar Questions

Explore conceptually related problems

Find the kinetic energy of emitted a-particles in the following nuclear reaction: ""_(94)Pu^(238) to ""_(92)U^(234) + ""_(2)He^(4) m(Pu^(238)) = 238.04954 amu m(U^(234)) = 234.04096 amu m(""_(2)He^(4)) = 4.002603 amu

The radionuclide .^(238)U decays by emitting an alpha particle. .^(238)Uto.^(234)Th+.^(4)He The atomic masses of the three isotopes are .^(238)" "U 238.05079 am u .^(234) U" "234.040363 am u .^(4) He " " 4.00260 am u What is the maximum kinetic energy of the emitted alpha particle. Express your answer in Joule. ( 1am u = 1.67 xx 10^(-27)kg )

The number of alpha and beta -particle emitted in the transformation ""_(92)^(238)U to ""_(92)^(234)U

Calculate the energy released when three alpha particles combine to form a ^12 C nucleus. The atomic mass of _2^4 He is 4.002603 u .

How many alpha and beta -particles are emitted in the transformation ""_(92)^(238)U rarr ""_(92)^(234)U