Home
Class 11
MATHS
The value of (1+i)^4+(1-i)^4 is...

The value of `(1+i)^4+(1-i)^4` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of ((1+i)/(1-i))^(4) is:

The value of ((1+i)/(1-i))^(4 n)=

Find the value of (1-i)^(4)

The value of (1+i)^(4)(1+(1)/(i))^(4) is

The ascending order of the values of z_1(1+i)^4+(1-i)^4, z_2=(sqrt3+i)^(12)+(sqrt3-i)^(12), z_3=(1+isqrt3)^(9)+(1-isqrt3)^9

The value of (1+i) (1-i^(2)) (1+i^(4))(1-i^(5)) is

The value of (1+i) (1-i^(2)) (1+i^(4))(1-i^(5)) is

The value of (1+i)(1+i)^2(1+i)^3(1+i^4) is:

(1) The value of (1+i)(1+i^2)(1+i^3)(1+i^4) is