Home
Class 12
MATHS
Prove that: sin^(-1)(4/5)+sin^(-1)(5/(13...

Prove that: `sin^(-1)(4/5)+sin^(-1)(5/(13))+sin^(-1)((16)/(65))=pi/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin^(-1)""(4)/(5)+sin^(-1)""(5)/(13)=cos^(-1)""(16)/(65)

Prove that: sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)

Prove that: sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)

Prove that: sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)

Solve : 2pi-(sin^(-1)(4/5)+sin^(-1)(5/13)+sin^(-1)(16/65))=

Prove thate sin^(-1)((3)/(5))-cos^(-1)((12)/(13))=sin^(-1)((16)/(65))

Prove that: sin^(-1)((3)/(5))+cos^(-1)((12)/(13))=sin^(-1)((56)/(65))

Prove that : sin^-1(4/5) + sin^-1 (5/13) = cos^-1 (16/25)

show that sin ^(-1)""(4)/(5) +sin ^(-1)""(5)/(13) +sin ^(-1)""(16)/(65) =(pi)/(2)

Prove that sin^(-1)((4)/(5))+tan^(-1)((5)/(12))+cos^(-1)((63)/(65))=(pi)/(2)