Home
Class 12
MATHS
If f^(prime)(1)=2 and y=f((log)e x) , fi...

If `f^(prime)(1)=2` and `y=f((log)_e x)` , find `(dy)/(dx)` at `x=e` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If f'(1)=2 and y=f((log)_(e)x), find (dy)/(dx) at x=e .

If f^(prime)(x)=sqrt(2x^2-1) and y=f(x^2) , then find (dy)/(dx) at x=1 .

If y=e^(x) log (sin 2x), find (dy)/(dx) .

If y=f(a^x)a n df^(prime)(sinx)=(log)_e x ,t h e n find (dy)/(dx), if it exists, where pi//2

If y=e^log x , find dy/dx

If y=f(a^x)a n df^(prime)(sinx)=(log)_e x ,then f i n d ((dy)/(dx)), if it exists, where pi/2 less than x less than pi

If y=f(a^x)a n df^(prime)(sinx)=(log)_e x ,then f i n d ((dy)/(dx)), if it exists, where pi/2 less than x less than pi

If y=f(a^x)a n df^(prime)(sinx)=(log)_e x ,t h e nfin d(dy)/(dx), if it exists, where pi/2

If y=f(a^x)a n df^(prime)(sinx)=(log)_e x ,t h e nfin d(dy)/(dx), if it exists, where pi/2

If y=e^([log (x+1)-log x])." Find" (dy)/(dx)