Home
Class 12
MATHS
Let x=(anti log2 3)*log3 2, y=log2(log3 ...

Let `x=(anti log_2 3)*log_3 2, y=log_2(log_3 512))"and"z=log_5 3*log_7 5*log_2 7,` then `xyz` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

a=log_5 3+log_7 5+log_9 7

If log_(2)(log_(2)(log_(3)x))=log_(3)(log_(3)(log_(2)y))=0 , then x-y is equal to :

If log_(2)(log_(2)(log_(3)x))=log_(3)(log_(3)(log_(2)y))=0 , then x-y is equal to :

Prove that log_5 log_2 log_3 log_2 512=0

x=log_(5)3+log_(7)5+log_(9)7

If log_2 (log_2 (log_3 x)) = log_2 (log_3 (log_2 y))=0 , then the value of (x+y) is

A denotes the product xyz where x,y and z satisfy log_3 x= log5-log7 and log_5 y=log7-log 3 and log_7 z=log 3-log5 B denotes the sum of square of solution of the equation, log_2(log_2 x^6 - 3) - log_2(log_2 x^4 - 5) = log_2 3 C denotes characterstio of logarithm log_2 (log_2 3)-log_2 (log_4 3)+log_2(log_4 5)-log_2(log_6 5)+log_2 (log_6 7)-log_2 (log_6 3) The valuo of A+B+C is equal to

If log_(2a)a=X,log_(3a)2a=y, and log_(4a)3a= z,then xyz-2yz is equal to