Home
Class 12
MATHS
Let L = lim(x->0) (sin^(-1)x-tan^(-1)x)/...

Let `L = lim_(x->0) (sin^(-1)x-tan^(-1)x)/(x^2), M = lim_(x->1) (1+sin((3pix))/(1+x^2))/(1+cos pix)`nd N is the number of integral points where `f(x) = [x^2]-[x]^2, AA x in [-7/2,7/2]` s discontinuous (where [.] denotes greatest integer function). Then which of the following hold(s) good? A) 6L-M=3 B `6L+N gt 9` C) `L lt M` D) `L ge M`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (sin^-1x-tan^-1x)/(3x^3)=L then find (6L+1)

lim_(x->1) (1+sin((3pix)/(1+x^2)))/(1+cospix) is (a) 0 (b) 1 (c) 2 (d) 3

The range of f(x)=log_(csc x-1)(2-[sin x]-[sin x]^(2)) is (where I l denotes the greatest integer function)

f(x) = lim_(n->oo) sin^(2n)(pix)+[x+1/2] , where [.] denotes the greatest integer function, is

If f(x) = {{:("sin"(pix)/(2)",",x lt 1),([x]",",x ge 1):} , where [x] denotes the greatest integer function, then

If f(x) = {{:("sin"(pix)/(2)",",x lt 1),([x]",",x ge 1):} , where [x] denotes the greatest integer function, then

If f(x) = {{:("sin"(pix)/(2)",",x lt 1),([x]",",x ge 1):} , where [x] denotes the greatest integer function, then

Discuss the continuity and differentiability in 0,2] of f(x)={|2x-3|[x],x>=1sin((pi x)/(2)),x<1 to where I.l denotes the greatest integer function.

Let L=lim_(x rarr1)(sin(6cos^(-1)x))/(sqrt(1-x^(2))) and M=lim_(x rarr1)(1-cos(6cos^(-1)x))/(1-x^(2)) .Then value of L+M is

f(x)=lim_(n rarr oo)sin^(2n)(pi x)+[x+(1)/(2)], where [.] denotes the greatest integer function,is