Home
Class 12
MATHS
Let f be a function satisfying the condi...

Let f be a function satisfying the condition `lambda f(xy)=(f(x))/y+(f(y))/x AA x, ygt0` If `f(x)` is differentiable and f(1)=1 then the value of `lim_(x->oo)x.f(x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

A function satisfies the conditions f(x+y)=f(x) + f(y), AA x, y in R then f is

Let f(x) is a function satisfying the condition f(x)=(1)/(3)[f(x+6)+(6)/(f(x+7))] and f(x)>0AA x in R then if lim_(x rarr oo)f(x)=sqrt(m then the value of m is )

Let f(x) be a differentiable function satisfying the condition f((x)/(y)) = (f(x))/(f(y)) , where y != 0, f(y) != 0 for all x,y y in R and f'(1) = 2 The value of underset(-1)overset(1)(int) f(x) dx is

f(x+y)=f(x).f(y)AA x,y in R and f(x) is a differentiable function and f'(0)=1,f(x)!=0 for any x.Findf(x)

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is