Home
Class 12
MATHS
If f(x) is differentiable and f'(x) is c...

If f(x) is differentiable and f'(x) is continuous with `f'(2)=14` then`lim_(x->0) (f(2+sinx)-f(2+xcosx))/(x-sinx)` is equal to (A) 14 (B) 7 (C) 28 (D) 56

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f'(x) be continuous at x=0 and f'(0)=4 then value of lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2))

Let f''(x) be continuous at x = 0 and f"(0) = 4 then value of lim_(x->0)(2f(x)-3f(2x)+f(4x))/(x^2)

If f(x) is differentiable increasing function, then lim_(x to 0) (f(x^(2)) -f(x))/(f(x)-f(0)) equals :

If f(x) is differentiable and strictly increasing function, then the value of ("lim")_(xvec0)(f(x^2)-f(x))/(f(x)-f(0)) is 1 (b) 0 (c) -1 (d) 2

If f(x) is differentiable and strictly increasing function, then the value of ("lim")_(xvec0)(f(x^2)-f(x))/(f(x)-f(0)) is 1 (b) 0 (c) -1 (d) 2

If f(x) is differentiable and strictly increasing function,then the value of lim_(x rarr0)(f(x^(2))-f(x))/(f(x)-f(0)) is 1 (b) 0(c)-1 (d) 2

Let f(x)=|cosx x 1 2sinx x2xsinx x x| , then (lim)_(x->0)(f(x))/(x^2) is equal to (a) 0 (b) -1 (c) 2 (d) 3

If f is a differentiable function and 2f(sinx) + f(cosx)=x AA x in R then f'(x)=

Let f(x) be a differentiable function and f'(4)=5 . Then lim_(x to 2) (f(4) -f(x^(2)))/(x-2) equals