Home
Class 11
MATHS
If x in (0,pi/2),t h e ns howt h a t ...

If `x in (0,pi/2),t h e ns howt h a t` `d/(dx)cos^(-1){7/2(1+cos2x)+(sqrt(sin^2x-48cos^2x))sinx}` `=1+(7sinx)/sqrt(sin^2-48cos^2x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x in(0,(pi)/(2)), thenshowthat(d)/(dx)cos^(-1){(7)/(2)(1+cos2x)+(sqrt(sin^(2)x-48cos^(2)x))sin x}=1+(7sin x)/(sqrt(sin^(2)-48cos^(2)x))

If x in (0,pi/2), then show that cos^(-1)(7/2(1+cos2x)+sqrt((sin^2x-48cos^2x))sinx)=x-cos^(-1)(7cosx)

If x in (0,pi/2), then show that cos^(-1)(7/2(1+cos2x)+sqrt((sin^2x-48cos^2x))sinx)=x-cos^(-1)(7cosx)

If x in (0,pi/2), then show that cos^(-1)(7/2(1+cos2x)+sqrt((sin^2x-48cos^2x))sinx)=x-cos^(-1)(7cosx)

If x in (0,pi/2), then show that cos^(-1)(7/2(1+cos2x)+sqrt((sin^2x-48cos^2x))sinx)=x-cos^(-1)(7cosx)

If x in(0,(pi)/(2)), then show that cos^(-1)((7)/(2)(1+cos2x)+sqrt((sin^(2)x-48cos^(2)x))sin x)=x-cos^(-1)(7cos x)

d/dx {cos [2sin^(-1) (cos x)]} =

(d)/(dx)(sin{2cos^(-1)(sinx)}]=

(d)/(dx)[(1+cos2x+sin2x)/(1+sin2x-cos2x)]=