Home
Class 12
MATHS
[" Given that "f'(2)=6" and "f'(1)=4" th...

[" Given that "f'(2)=6" and "f'(1)=4" then "],[lim_(h rarr0)(f(2h+2+h^(2))-f(2))/(f(h-h^(2)+1)-f(1))" is : "]

Promotional Banner

Similar Questions

Explore conceptually related problems

Given that f'(2)=6 and f'(1)=4 then {:("Lim"),(hrarr0):}(f(2h+2+h^(2))-f(2))/(f(h-h^(2)+1)-f(1)) is :

If f'(2)=6 and f'(1)=4 ,then lim_(x rarr0)(f(x^(2)+2x+2)-f(2))/(f(1+x-x^(2))-f(1)) is equal to ?

If f'(3)=2, then lim_(h rarr0)(f(3+h^(2))-f(3-h^(2)))/(2h^(2)) is

lim_(h rarr0)h sin(1/h)

f(x) is differential function. Given f^(')(1) =4, f^(')(2) - 6 , then lim_(h rarr 0) (f(2+2h+h^(2))-f(2))/(f(1+h-h^(2))-f(1))

lim_(h rarr0)(e^((x+h)^(2))-e^(x^(2)))/(h)

lim_(h rarr0)(sin^(2)(x+h)-sin^(2)x)/(h)

If f(x) is differentiable EE f'(1)=4,f'(2)=6 then lim_(h rarr0)(f(3h+2+h^(3))-f(2))/(f(2h-2h^(2)+1)-f(1))=