Home
Class 11
MATHS
Let -1/6 < theta < -pi/12 Suppose ...

Let `-1/6 < theta < -pi/12` Suppose `alpha_1 and beta_1`, are the roots of the equation `x^2-2xsectheta + 1=0` and `alpha_2 and beta_2` are the roots of the equation `x^2 + 2xtantheta-1=0`. If `alpha_1 > beta_1` and `alpha_2 >beta_2`, then `alpha_1 + beta_2` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

Let -pi/6 beta_1 and alpha_2 >beta_2 , then alpha_1 + beta_2 equals

Let -pi/6 beta_1 and alpha_2 >beta_2 , then alpha_1 + beta_2 equals:

Let -pi/6 beta_1 and alpha_2 >beta_2 , then alpha_1 + beta_2 equals:

Let -pi/6 beta_1 and alpha_2 >beta_2 , then alpha_1 + beta_2 equals:

Let -pi/6 beta_1 and alpha_2>beta_2 then alpha_1+beta_2 equals

If alpha and beta are the roots of the equation x^2+x+1=0 , then alpha^2+beta^2 is equal to:

If alpha and beta are the roots of the equations x^2-p(x+1)-c=0 , then (alpha+1)(beta+1)_ is equal to: