Home
Class 12
MATHS
If (sin^4 theta)/a + (cos^4 theta)/b = 1...

If `(sin^4 theta)/a + (cos^4 theta)/b = 1/(a+b)`, then `(sin^8 theta)/a^3 + (cos^8 theta)/b^3 =`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (sin^4theta)/a+(cos^4theta)/b=1/(a+b) , prove that (sin^8theta)/(a^3)+(cos^4theta)/(b^3)=1/((a+b)^3) (sin^(4n)theta)/(a^(2n-1))+(cos^(4n)theta)/(b^(2n-1))=1/((a+b)^(2n-1)),n in N

If (sin^(4)theta)/(a)+(cos^(4)theta)/(b)=(1)/(a+b), prove that (sin^(8)theta)/(a^(3))+(cos^(4)theta)/(b^(3))=(1)/((a+b)^(3))(sin^(4n)theta)/(a^(2n-1))+(cos^(4n)theta)/(b^(2n-1))=(1)/((a+b)^(2n-1)),n in N

If (cos^(2) theta)/(a) = (sin^(2) theta)/(b) then (cos^(4) theta)/(a) + (sin^(4) theta)/(b) =

If sin((theta)/(2))=a,cos((theta)/(2))=b then (1+sin theta)/(3sin theta+4cos theta+5)=

If a sin^(3) theta + b cos^(3) theta = sin^(3) theta * cos theta and a sin theta - b cos theta=0 , then prove that a^(2)+b^(2)=1 .

If (cos^(2)theta)/(a)=(sin^(2)theta)/(b) then (cos^(4)theta)/(a)+(sin^(4)theta)/(b)=0

if (cos^(2)theta)/(a)=(sin^(2)theta)/(b) then (cos^(4)theta)/(a)+(sin^(4)theta)/(b)=?

If sin theta + sin^(2) theta =1 then cos^(4) theta + cos^(8) theta + 2 cos^(6) theta =