Home
Class 11
MATHS
Prove that 1^2+2^2+dotdotdot+n^2>(n^3)/3...

Prove that `1^2+2^2+dotdotdot+n^2>(n^3)/3,``n in N`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: 1^2+2^2+3^2.....+n^2>(n^3)/3, n in N

Prove that, 1^2 + 2^2 + …..+ n^2 gt (n^3)/(3) , n in N

Prove that 1^(2)+2^(2)+...+n^(2)>(n^(3))/(3)n in N

For all n geq1 , prove that 1^2+2^2+3^2+4^2+dotdotdot+n^2= (n(n+1)(2n+1))/6

Prove that 1^(2) +2^(2)+ ….+n^(2) gt (n^(3))/(3) n in N

Prove that 1^(2) +2^(2)+ ….+n^(2) gt (n^(3))/(3) , n in N

Show that (1xx2^2+2xx3^2+dotdotdot+nxx(n+1)^2)/(1^2xx2+2^2xx3+dotdotdot+n^2xx(n+1))=(3n+5)/(3n+1)dot

Show that (1xx2^2+2xx3^2+dotdotdot+nxx(n+1)^2)/(1^2xx2+2^2xx3+dotdotdot+n^2xx(n+1))=(3n+5)/(3n+1)dot

Prove that : 1^2+2^2+3^2++n^2=(n(n+1)(2n+1))/6

For all ngeq1 , prove that 1/(1. 2)+1/(2. 3)+1/(3. 4)+dotdotdot+1/(n(n+1))=n/(n+1)