Home
Class 12
MATHS
lim(x->0)((x-1+cosx)/x)^(1/x)...

`lim_(x->0)((x-1+cosx)/x)^(1/x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((x-1+cosx)/x)^(1/x) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((x-1+cosx)/x)^(1/x) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)xg(x)) lim_(xto0)((x-1+cosx)/x)^(1/x) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((x-1+cosx)/x)^(1/x) is equal to

Evaluate: lim_(xto0)((x-1+cosx)/(x))^(1//x)

lim_(xrarr0)((x-1+cosx)/(x))^(1//x)

lim_(x->0)(1/x)^(1-cosx)

lim_(xto0)(1-cosx)/x^(2)

If and n are positive integers, then lim_(x->0)((cosx)^(1/ m)-(cosx)^(1/ n))/(x^2) equal to :

Prove that: underset(x rarr0)lim ((x-1+cosx)/(x))^(1/x) = e^(-1/2)