Home
Class 11
MATHS
If the line l x+m y+n=0 touches the para...

If the line `l x+m y+n=0` touches the parabola `y^2=4a x ,` prove that `ln=a m^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the line lx+my+n=0 touches the parabola y^(2)=4ax, prove that ln=am^(2)

If the straight line lx+my+n=0 touches the : parabola y^(2)=4ax , prove that am^(2)=nl

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

If the line l x+m y+n=0 touches the circle x^2+y^2=a^2 , then prove that (l^2+m^2)a^2=n^2dot

Prove that the straight line lx+my+n=0 touches the parabols y^2=4ax , if ln=am^2 .

The line 4 x+6 y+9=0 touches the parabola y^(2)=4 x at the point

The line 4x+6y+9 =0 touches the parabola y^(2)=4ax at the point

The line 4x+6y+9 =0 touches the parabola y^(2)=4ax at the point