Home
Class 12
MATHS
If the straight line y=xsinalpha+asecalp...

If the straight line `y=xsinalpha+asecalpha` be a tangent to the circle then show that `cos^2alpha=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the straight line y=x sin alpha+a sec alpha be a tangent to the circle then show that cos^(2)alpha=1

If the straight line y= x sin alpha+ a sec alpha be a tangent ot the circle x^(2)+y^(2)=a^(2) , then show that cos^(2)alpha=1

If the straight line y= x sin alpha + a sec alpha is a tangent to the circle x^(2) + y^(2) = a^(2) then-

If the line ycosalpha=xsinalpha+acosalpha be a tangent to the circle x^2+y^2=a^2 , then

If the line y cos alpha=x sin alpha+a cos alpha be a tangtnt to the circle x^(2)+y^(2)=a^(2) then

Find the value of p so that the straight line x cos alpha + y sin alpha - p may touch the circle x^(2) + y^(2)-2ax cos alpha - 2ay sin alpha = 0 .

If the line y cos alpha = x sin alpha +a cos alpha be a tangent to the circle x^(2)+y^(2)=a^(2) , then

If the line y cos alpha = x sin alpha +a cos alpha be a tangent to the circle x^(2)+y^(2)=a^(2) , then

The line x cos alpha+y sin alpha=p will be a tangent to the circle x^(2)+y^(2)-2ax cos alpha-2ay sin alpha=0.1fp=

Find the condition that the straight line x cos alpha+ y sin alpha=p is a tangent to the : ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1