Home
Class 12
MATHS
" If "|z|=min{|z-1|,|z+1|}," then: "...

" If "|z|=min{|z-1|,|z+1|}," then: "

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z-3|=min{|z-1|,|z-5|} , then Re(z) equals to

If |z-3|=min{|z-1|,|z-5|} , then Re(z) equals to

If |z-3|=min{|z-1|,|z-5|} , then Re(z) equals to

If |z-3|=min{|z-1|,|z-5|}, then the values of Re(z) will be

If |z-3|=min{|z-1|,|z-5|} , then Re(z) equals to

If |z|=min(|z-1|,|z+1|}, where z is the complex number and f be a one -one function from {a,b,c} to {1,2,3} and f(a)=1 is false, f(b)!=1 is false and f(c)!=2 is true then |z+barz|= (A) f(a) (B) f(c) (C) 1/2f(a) (D) f(b)

If |z|=min(|z-1|,|z+1|}, where z is the complex number and f be a one -one function from {a,b,c} to {1,2,3} and f(a)=1 is false, f(b)!=1 is false and f(c)!=2 is true then |z+barz|= (A) f(a) (B) f(c) (C) 1/2f(a) (D) f(b)

If |z-3| = "min" {|z-1|,|z-5|} , then Re(z) equals to

If |z-2|=min{|z-1|,|z-5|}, where z is a complex number then

If |z-2|= "min" {|z-1|,|z-3|} , where z is a complex number, then