Home
Class 12
MATHS
If ylogx=x-y prove that (dy)/(dx)=(logx)...

If `ylogx=x-y` prove that `(dy)/(dx)=(logx)/((1+logx)^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If ylog x=(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2))

If x^y=e^(x-y), Prove that (dy)/(dx)=(logx)/((1+logx)^2)

If x^y=e^(x-y) , prove that (dy)/(dx)=(logx)/(1+logx)^2

If x^y=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^2)

If x^y=e^(x-y), Prove that (dy)/(dx)=(logx)/((1+logx)^2)

If x^(y)=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2)).

If x^(y)=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2)).

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(logx)/((1+logx)^(2))

If x^y = e^(x-y) then prove that (dy)/(dx)=logx/(1+logx)^2 .