Home
Class 10
MATHS
In DeltaABC, AD and BE are altitudes. P...

In `DeltaABC, AD and BE` are altitudes. Prove that `(ar(DeltaDEC))/(ar(DeltaABC))= (DC^2)/(AC^2)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

In Delta ABC,AD and BE are altitudes.Prove that (ar(Delta DEC))/(ar(Delta ABC))=(DC^(2))/(AC^(2))

In the given figure, Delta ABC and Delta DBC have the same base BC. If AD and BC intersect at O, prove that (ar(DeltaABC))/(ar(Delta DBC))=(AO)/(DO)

In DeltaABC,AD is the bisector of angleA . Then , (ar(DeltaABD))/(ar(DeltaACD))=

In (DeltaABC) , MN||BC and AM:AB=1/3 . Then find the ratio of (ar(DeltaAMN))/(ar(DeltaABC))

In the DeltaABC , MN||BC and AM : : MB = 1/3 . Then, (ar(DeltaAMN))/(ar(DeltaABC)) =?

In DeltaABC , AC > AB and AD is a median. Prove that angleBAD

In DeltaABC , AD and BE are altitudes. If BC=8, AC=12 and AD=6, find ar (ABC) and BE.

In DeltaABC, /_A= 90^(@)" and "AD bot BC . Prove that (1)/(AD^2)=(1)/(AB^2)+(1)/(AC^2) .

ABCD is a trapezium with AB||DC. A line parallel to AC intersects AB at X and BC at Y. Prove that ar( Delta ADX) = ar( Delta ACY).

If DeltaABC~DeltaPQR with (BC)/(QR)=1/3 ,then (ar(DeltaPRQ))/(ar(DeltaBCA)) is equal to