Home
Class 11
MATHS
If the normal at any point P on the ell...

If the normal at any point `P` on the ellipse `x^2/a^2+y^2/b^2=1` meets the axes at `G and g` respectively, then find the raio `PG:Pg=` (a) `a : b` (b) `a^2 : b^2` (c) `b : a` (d) `b^2 : a^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the normal at any point P on the ellipse x^2/a^2+y^2/b^2=1 meets the axes at G and g respectively, then find the ratio PG:Pg .

If the normal at any point P on the ellipse x^2/a^2+y^2/b^2=1 meets the axes at G and g respectively, then find the ratio PG:Pg . (a) a : b (b) a^2 : b^2 (c) b : a (d) b^2 : a^2

If the normal at any point P on the ellipse x^2/a^2+y^2/b^2=1 meets the axes at G and g respectively, then find the ratio PG:Pg . (a) a : b (b) a^2 : b^2 (c) b : a (d) b^2 : a^2

If the normal at any point P on the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 meets the axes in G and g respectively. Find the ratio PG : Pg

If the normal at point P (theta) on the ellipse x^2/a^2 + y^2/b^2 = 1 meets the axes of x and y at M and N respectively, show that PM : PN = b^2 : a^2 .

If the normal at any point P on the ellipse x^2/64+y^2/36=1 meets the major axis at G_1 and the minor axis at G_2 then the ratio of PG_1 and PG_2 is equal to

If the normal at any point P on the ellipse x^2/a^2 + y^2/b^2 = 1 cuts the major and minor axes in L and M respectively and if C is the centre, then a^2 CL^2 + b^2 CM^2 = (A) (a-b) (B) (a^2 - b^2) (C) (a+b) (D) (a^2 + b^2)