Home
Class 11
PHYSICS
Workdone In Polytropic Process...

Workdone In Polytropic Process

Promotional Banner

Similar Questions

Explore conceptually related problems

What is a polytropic process, Obtain expressions for work done in a polytropic process and specific heat of gas in such a process.

Comparison OF Reversible and Rrreversible Adiabatic Process, Comparison OF Isothermal and Adiabatic Process, Cyclic Process and Polytropic Process

Isobaric Process || Isochoric Process || Polytropic Process

Free Expansion || Cyclic Process || Polytropic Process

Molar Heat Capacity OF Polytropic Process || Conversion OF Polytropic Process || into other Process || Case II :-Solid/Liquid || Case III :-Real Gas || Solved Numerical Class illustration

State Of Gas|Types Of Processes|Internal Energy|Work Done By Gas|Polytropic Process

Workdone In Adiabatic Process

A process in which work perfomed by an ideal gas is proportional to the corresponding increment of its internal energy is described as a polytropic process. If we represent work done by a ppolytropic process by W and increase in internal energy as Delta U then W prop Delta U or W=K_(1) DeltaU ...(i) For this process, it can be demonstrated that the relation between pressure and volume is given by the equation PV^( eta)= K_(2) (constant ) .....(ii) We know that a gas can have various values for molar specific heats. The molar specific heat 'C' for an ideal gas in polytropic process can be calculated with the help of first law of thermodynamics. In polytropic process process the variation of molar specific heat 'C' with eta for a monatomic gas is plotted as in the graph shown. In the graph shown, the y- coordinate of point A is ( for monatomic gas )

A process in which work perfomed by an ideal gas is proportional to the corresponding increment of its internal energy is described as a polytropic process. If we represent work done by a ppolytropic process by W and increase in internal energy as Delta U then W prop Delta U or W=K_(1) DeltaU ...(i) For this process, it can be demonstrated that the relation between pressure and volume is given by the equation PV^( eta)= K_(2) (constant ) .....(ii) We know that a gas can have various values for molar specific heats. The molar specific heat 'C' for an ideal gas in polytropic process can be calculated with the help of first law of thermodynamics. In polytropic process process the variation of molar specific heat 'C' with eta for a monatomic gas is plotted as in the graph shown. In the graph shown, the y- coordinate of point A is ( for monatomic gas )

A process in which work perfomed by an ideal gas is proportional to the corresponding increment of its internal energy is described as a polytropic process. If we represent work done by a ppolytropic process by W and increase in internal energy as Delta U then W prop Delta U or W=K_(1) DeltaU ...(i) For this process, it can be demonstrated that the relation between pressure and volume is given by the equation PV^( eta)= K_(2) (constant ) .....(ii) We know that a gas can have various values for molar specific heats. The molar specific heat 'C' for an ideal gas in polytropic process can be calculated with the help of first law of thermodynamics. In polytropic process process the variation of molar specific heat 'C' with eta for a monatomic gas is plotted as in the graph shown. In the graph shown, the y- coordinate of point A is ( for monatomic gas )