Home
Class 11
MATHS
From a point P tangents are drawn to the...

From a point P tangents are drawn to the ellipse `x^2/a^2+y^2/b^2=1` lf the chord of contact touches the auxiliary circle then the locus of P is

Promotional Banner

Similar Questions

Explore conceptually related problems

From a point P tangents are drawn to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 If the chord of contact touches the auxiliary circle then the locus of P is

From a point P tangents are drawn to the elipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1.1f the chord of contact touches the ellipse (x^(2))/(c^(2))+(y^(2))/(a^(2))=1, then the locus of P is

From a variable point P tangents are drawn to the ellipse 4x^(2) + 9y^(2) = 36 . If the chord of contact is bisected by the line x + y = 1, find the locus of P.

From a point, perpendicular tangents are drawn to the ellipse x^ + 2y^2 =2 . The chord of contact touches a circle concentric with the given ellipse. The ratio of the maximum and minimum areas of the circle is…

From a point P, tangents are drawn to the hyperbola 2xy = a^(2) . If the chord of contact of these tangents touches the rectangular hyperbola x^(2) - y^(2) = a^(2) , prove that the locus of P is the conjugate hyperbola of the second hyperbola.

From a point on the circle x^2+y^2=a^2 , two tangents are drawn to the circle x^2+y^2=b^2(a > b) . If the chord of contact touches a variable circle passing through origin, show that the locus of the center of the variable circle is always a parabola.

From a point on the circle x^2+y^2=a^2 , two tangents are drawn to the circle x^2+y^2=b^2(a > b) . If the chord of contact touches a variable circle passing through origin, show that the locus of the center of the variable circle is always a parabola.

From a point on the circle x^2+y^2=a^2 , two tangents are drawn to the circle x^2+y^2=b^2(a > b) . If the chord of contact touches a variable circle passing through origin, show that the locus of the center of the variable circle is always a parabola.

From any point on any directrix of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1,a > b , a pari of tangents is drawn to the auxiliary circle. Show that the chord of contact will pass through the correspoinding focus of the ellipse.

From any point on any directrix of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1,a > b , a pari of tangents is drawn to the auxiliary circle. Show that the chord of contact will pass through the correspoinding focus of the ellipse.