Home
Class 12
MATHS
[" Solve "(6)/(5)a^(log(2)x*log(10)a*log...

[" Solve "(6)/(5)a^(log_(2)x*log_(10)a*log_(2)5)-3^(log_(10)((x)/(10)))],[=9^(log_(100)x+log_(4)2)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Value of x, satisfying (6)/(5)a^(log_(a)(x))*(log_(10)(a)*log_(a)(5))-3^(log_(10)((x)/(10)))=9^(log_(100)(x)+log_(4)(2)) is :

(6)/(5)a^((log_(a)x)(log_(10)a)(log_(a)5))-3^(log_(10)((x)/(10)))=9^(log_(100)x+log_(4)2) (where a gt 0, a ne 1) , then log_(3)x=alpha +beta, alpha is integer, beta in [0, 1) , then alpha=

(6)/(5)a^((log_(a)x)(log_(10)a)(log_(a)5))-3^(log_(10)((x)/(10)))=9^(log_(100)x+log_(4)2)("where "a gt 0, a ne 1) , then log_(3)x=alpha +beta, alpha is integer, beta in [0, 1) , then alpha=

(6)/(5)a^((log_(a)x)(log_(10)a)(log_(a)5))-3^(log_(10)((x)/(10)))=9^(log_(100)x+log_(4)2)("where "a gt 0, a ne 1) , then log_(3)x=alpha +beta, alpha is integer, beta in [0, 1) , then alpha=

log_(10)3+log_(10)2-2log_(10)5

If (6)/(5)a^(A)-3^(B)=9^(C) where A=log_(a)x*log_(10)a log_(a)5,B=log_(10)((x)/(10)) and C=log_(100)x+log_(4)2. Find x

(log_(10)2)^(3)+log_(10)8*log_(10)5+(log_(10)5)^(3) is

Solve 25^(log_(10)x)=5+4x^(log_(10)5)

(x-2)^(log_(10)^(2)(x-2)+log_(10)(x-2)^(5)-12)=10^(2log_(10)(x-2))