Home
Class 12
MATHS
Given A=[(2,1),(2,1)]; B=[(9,3),(3,1)] I...

Given `A=[(2,1),(2,1)]`; `B=[(9,3),(3,1)]` `I` is a unit matrix of order 2. FInd all possible matrix `X` in the following cases: (i) `AX=A` (ii) `XA=I` (iii) `XB=O` but `BX!=O`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[{:(,2,-1),(,-1, 3):}]" evaluate "A^2-3A+3I , where I is a unit matrix of order 2.

Given [{:(,2,1),(,-3,4):}]. X=[{:(,7),(,6):}] . Write : (i) the order of the matrix X. (ii) the matrix X.

Given [(4,2),(-1,1)] M = 6 I, where M is a matrix and I is the unit matrix or order 2xx2 . (ii) Find the matrix M.

If A=[{:(,0,2),(,5,-2):}], B=[{:(,1,-1),(,3,2):}] and is a unit matrix of order 2 xx 2 find : (i) AB (ii) BA (iii) AI (Iv) A^2 (v) B^2A

If A = [(2,2),(4,3)] show that, A A^(-1) =I_(2) wher I_(2) is the unit matrix of order 2.

If A=[[3,1],[-1,2]] prove that A^2-5A+7I=O ,where I is unit matrix of order 2.

Given A=[{:(,-1,0),(,2,-4):}] and B=[{:(,3,-3),(,-2,0):}] find the matrix X in each of the following (i) A+X=B (ii) A-X=B (iii) X-B=A

If A= ((2,3),(-1,2)) .Show that A^(2)-4A+7I=0 whwre I is the unit matrix of order 2.