Home
Class 12
MATHS
Let f(x)=[(sin^2x,sinx,1),(sinx,1,sin^2x...

Let `f(x)=[(sin^2x,sinx,1),(sinx,1,sin^2x),(1,sin^2x,sinx)]` and `g(x)=[(cos^2x,cosx,1),(cosx,1,cos^2x),(1,cos^2x,cosx)]`. If `h(x)=Tr.(f(x)g(x))`, then find the absolute value of the difference between maximum and minimum value of h(x). [`Tr. (P)` denotes the trace of Matrix P]

Promotional Banner

Similar Questions

Explore conceptually related problems

If F(x)=[(cosx,-sinx,0),(sinx,cosx,0),(0,0,1)] and G(x)=[(cosx,0,sinx),(0,1,0),(-sinx,0,cosx)] then [F(x)G(x)]^(-1) =

Find maximum and minimum values of 9cos^(2)x + 48 sinx cosx - 5 sin^(2)x - 2 .

Find maximum and minimum values of 9cos^(2)x + 48 sinx cosx - 5 sin^(2)x - 2 .

Let f(x)= |{:(cosx,sinx,cosx),(cos2x,sin2x,2cos2x),(cos3x,sin3x,3cos3x):}| then find the value of f'((pi)/(2)) .

Let f(x)= |{:(cosx,sinx,cosx),(cos2x,sin2x,2cos2x),(cos3x,sin3x,3cos3x):}| then find the value of f'((pi)/(2)) .

Let f(x)= |{:(cosx,sinx,cosx),(cos2x,sin2x,2cos2x),(cos3x,sin3x,3cos3x):}| then find the value of f'((pi)/(2)) .

sinx + cosx = (cos2x)/(1-sin2x)

If A=[(cosx,sinx),(-sinx,cosx)] , show that A^(2)=[(cos2x,sin2x),(-sin2x,cos2x)] and A^(1)A=1 .

Let f(x)=sinx+cosx+tanx+sin^(-1)x+cos^(-1)x+tan^(-1)xdot Then find the maximum and minimum values of f(x)dot