Home
Class 11
MATHS
(lim)(x->0)(s i n a x)/(sinb x)a ,b ,!=0...

`(lim)_(x->0)(s i n a x)/(sinb x)a ,b ,!=0`

Text Solution

AI Generated Solution

To solve the limit \(\lim_{x \to 0} \frac{\sin(Ax)}{\sin(Bx)}\) where \(A\) and \(B\) are non-zero constants, we can use the standard limit property of sine functions. Here’s a step-by-step solution: ### Step 1: Rewrite the limit We start with the limit: \[ \lim_{x \to 0} \frac{\sin(Ax)}{\sin(Bx)} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT|Exercise SOLVED EXAMPLES|25 Videos
  • LIMITS AND DERIVATIVES

    NCERT|Exercise MISCELLANEOUS EXERCISE|30 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT|Exercise EXERCISE 12.1|4 Videos
  • LINEAR INEQUALITIES

    NCERT|Exercise EXERCISE 6.2|10 Videos

Similar Questions

Explore conceptually related problems

"lim"_(x->0)(ln(t a n(pi/4+a x)))/(sinb x),b!=0 is equal to (a) a/b (b) (2a)/b (c) a/(2b) (d) b/a

Evaluate the following limit: (lim)_(x->0)(a^(t a n x)-a^(sin x))/(t a n x-sin x),\ a >0

Evaluate the following limit: (lim)_(x rarr0)(s in3x-s in x)/(sin x)

Evaluate (i) (lim)_(x""->0)(sin4x)/(sin2x) (ii) (lim)_(x""->0)(tanx)/x

Evaluate the following limit: (lim)_(x->0)(2s in x^0-s in2x^0)/(x^3)

lim_(x rarr0)(a^(x)-b^(x))/(sin x)

If lim_(x to 0) (x^n-sin^n x)/(x-sin^n x) is nonzero and finite , then n in equal to

(2) lim_(n rarr0) (n!sin x)/(n)

Evaluate the following limit: (lim)_(x rarr0)(tan x-s in x)/(s in3x-xs in x)

(lim_(x rarr0)(|s in x|)/(x) is a.1b*-1c.0d .none of these