Home
Class 12
MATHS
(1)/(log(4)[(x+1)/(x+2)])<(1)/(log(4)(x+...

(1)/(log_(4)[(x+1)/(x+2)])<(1)/(log_(4)(x+3))

Promotional Banner

Similar Questions

Explore conceptually related problems

The inverse of f(x)=(10^(x)-10^(-x))/(10^(x)+10^(-x)) is A). (1)/(2)log_(10)((1+x)/(1-x)) , B). log_(10)(2-x) , C). (1)/(2)log_(10)(2-1) , D). (1)/(4)log_(10)((2x)/(2-x))

If log_((1)/(8))(log_((1)/(4))(log_((1)/(2))x))=(1)/(3)th n x is

The smallest integral x satisfying the inequality (1-log_(4)x)/(1+log_(2)x)le (1)/(2)x is.

The smallest integral x satisfying the inequality (1-log_(4)x)/(1+log_(2)x)le (1)/(2)x is.

The smallest integral x satisfying the inequality (1-log_(4)x)/(1+log_(2)x)le (1)/(2)x is.

Solve for x:(log)_(4)(x^(2)-1)-(log)_(4)(x-1)^(2)=(log)_(4)sqrt((4-x)^(2))

int(ln((x-1)/(x+1)))/(x^(2)-1)dx is equal to (a) (1)/(2)(ln((x-1)/(x+1)))^(2)+C(b)(1)/(2)(ln((x+1)/(x-1)))^(2)+C(c)(1)/(4)(ln((x-1)/(x+1)))^(2)+C(d)(1)/(4)(ln((x+1)/(x-1)))^(2)+C

log_(4)(x^(2)-1)-log_(4)(x-1)^(2)=log_(4)sqrt((4-x)^(2))

If (log_(2)(4x^(2)-x-1))/(log_(2)(x^(2)+1))>1, then x may be

The set ofall the values of x for which log_((1)/(4))(2-x)>log_((1)/(4))((2)/(x+1)) is