Home
Class 11
MATHS
[" Thissection contains multiple choice ...

[" Thissection contains multiple choice questions.Each question in then "],[" (EXAMPLE "1)" If "t_(1),t_(2)" and "t_(3)" are distinct,the points "(t_(1),2at_(1)+at_(1)^(3))," ,"],[(t_(2),2at_(2)+at_(2)^(3))" and "(t_(3),2at_(3)+at_(3)^(3))" are collinear "if],[[" (a) "t_(1)t_(2)t_(3)=1," (b) "t_(1)+t_(2)+t_(3)=t_(1)t_(2)t_(3)],[" (c) "t_(1)+t_(2)+t_(3)=0," (d) "t_(1)+t_(2)+t_(3)=-1],[" Ans.(c) "," (d) "t_(1)+t_(2)+t_(3)=-1],[" SOLUTION The given points are collinear if "]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If t_(1), t_(2) and t_(3) are distinct, then the points: (t_(1), 2at_(1), at_(1)^(3)), (t_(2), 2at_(2)+at_(2)^(3)) and (t_(3), 2at_(3)+at_(3)^(3)) are colinear if :

If t_(1),t_(2) and t_(3) are distinct, the points (t_(1)2at_(1)+at_(1)^(3)), (t_(2),2"at"_(2)+"at_(2)^(3)) and (t_(3) ,2at_(3)+at_(3)^(3))

If t_(1),t_(2) and t_(3) are distinct, the points (t_(1)2at_(1)+at_(1)^(3)), (t_(2),2"at"_(2)+"at_(2)^(3)) and (t_(3) ,2at_(3)+at_(3)^(3))

If t_1,t_2 and t_3 are distinct, the points (t_1, 2at_1 + at_1^3), (t_2, 2at_2 + at_2^3), (t_3, 2at_3 +at_3^3) are collinear then show that t_1+t_2+t_3=0 .

If t_(1)!=t_(2)!=t_(3) are the lines t_(1)x+y=2at_(1)+at_(1)^(3),t_(2)x+y=2at_(2)+at_(2)^(3),t_(3)x+y=2at_(3)+at_(3)^(3) are concurrent then t_(1)+t_(2)+t_(3)=

The three distinct point A(t_(1)^(2),2t_(1)),B(t_(2)^(2),2t_(2)) and C(0,1) are collinear,if