Home
Class 12
MATHS
The natural number a for which sum(k=1,n...

The natural number `a` for which `sum_(k=1,n) f(a+k)=16(2^n-1)` where the function f satisfies the relation `f(x+y)=f(x).f(y)` for all natural numbers x,y and further `f(1)=2` is:- A) 2 B) 3 C) 1 D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the natural number a for which sum_(k=1) ^(n)f(a+k)= 16(2^(n)-1) where the function f satisfies the relation f(x+y)=f(x)f(y) for all natural numbers x,y and further f(1)=2 .

Find the natural number a for which sum_(k=1)^(n)f(a+k)=16(2^(n)-1), where the function f satisfies the relation f(x+y)=f(x)f(y) for all natural number x,y and,further,f(1)=2.

The value of natural number 'a' for which sum_(k=1)^(n)f(a+k)=16(2^(n)-1) , where the function satisfies the relation f(x+y)=f(x).f(y) for all natural numbers x, y and further f(1)=2 is

The natural number a for which sum_(k=1)^(n)f(a+k)=2n(33+n) where the function f satisfies the relation f(x+y)=f(x)+f(y) for all the natural numbers x,y and further f(1)=4 is

Find the natural number a for which sum_(k=1)^(n)f(a+k)=16(2^(n)-1) where the function f satisfies the relation f(x+y)=f(x).f(y) for all natural numbers and also f(1)=2

Find the natural number a for which sum_(k=1)^nf(a+k)=16(2^n-1), where the function f satisfies the relation f(x+y)=f(x)f(y) for all natural number x , ya n d ,fu r t h e r ,f(1)=2.

Find the natural number a for which sum_(k=1)^nf(a+k)=16(2^n-1), where the function f satisfies the relation f(x+y)=f(x)f(y) for all natural number x , ya n d ,fu r t h e r ,f(1)=2.

Find the natural number a for which sum_(k=1)^nf(a+k)=16(2^n-1), where the function f satisfies the relation f(x+y)=f(x)f(y) for all natural number x , ya n d ,fu r t h e r ,f(1)=2.

Find the natural number a for which sum_(k=1)^nf(a+k)=16(2^n-1), where the function f satisfies the relation f(x+y)=f(x)f(y) for all natural number x , ya n d ,fu r t h e r ,f(1)=2.

Find the natural number a for which sum_(k=1)^nf(a+k)=16(2^n-1), where the function f satisfies the relation f(x+y)=f(x)f(y) for all natural number x , ya n d ,fu r t h e r ,f(1)=2.