Home
Class 11
MATHS
The range of f(x)=(2+x-[x])/(1-x+[x]).wh...

The range of `f(x)=(2+x-[x])/(1-x+[x])`.where [ ] denotes the greatest integer function is

Promotional Banner

Similar Questions

Explore conceptually related problems

The range of f(x)=(2+x-[x])/(1-x+[x]). where [1] denotes the greatest integer function is

If f(x)=(x-[x])/(1-[x]+x), where [.] denotes the greatest integer function,then f(x)in:

Domain (D) and range (R ) of f(x)=sin^(-1)(cos^(-1)[x]) where [ ] denotes the greatest integer function is

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function,is

Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function, is

Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function, is

Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function, is

If f(x)=[2x], where [.] denotes the greatest integer function,then

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then