Home
Class 12
MATHS
If in triangle A B C , vec A B= vec u/(|...

If in triangle `A B C , vec A B= vec u/(| vec u|)- vec v/(| vec v|)a n d vec A C=(2 vec u)/(| vec u|),w h e r e| vec u|!=| vec v|,` then `1+cos2A+cos2B+cos2C=0` b.`sinA=cos C` c. projection of `A C` on `B C` is equal to `B C` d. projection of `A B` on `B C` is equal to `A B`

Promotional Banner

Similar Questions

Explore conceptually related problems

If in triangle A B C , vec A B= vec u/(| vec u|)- vec v/(| vec v|)a n d vec A C=(2 vec u)/(| vec u|),w h e r e| vec u|!=| vec v|, then a. 1+cos2A+cos2B+cos2C=0 b. sinA=cos C c. projection of A C on B C is equal to B C d. projection of A B on B C is equal to A B

If in triangle A B C , vec A B= vec u/(| vec u|)- vec v/(| vec v|)a n d vec A C=(2 vec u)/(| vec u|),w h e r e| vec u|!=| vec v|, then a. 1+cos2A+cos2B+cos2C=0 b. sinA=cos C c. projection of A C on B C is equal to B C d. projection of A B on B C is equal to A B

If in triangle ABC,vec AB=(vec u)/(|vec u|)-(vec v)/(|vec v|) and vec AC=(2vec u)/(|vec u|), where |vec u|!=|vec v| then 1+cos2A+cos2B+cos2C=0 b.sin A=cos C c. projection of AC on BC is equal to BC d.projection of AB on BC is equal to AB

vec u = vec a-vec b, vec v = vec a + vec b and | vec a | = | vec b | = 2 then | vec u xxvec v | is equal to

[vec a + vec b, vec b + vec c, vec c + vec a] = 2 [vec a, vec b, vec c]

[[vec a + vec b-vec c, vec b + vec c-vec a, vec c + vec a-vec b is equal to

In a regular hexagon A B C D E F ,\ A vec B=a ,\ B vec C= vec b\ a n d\ vec C D=c\ T h e n\ vec A E=

If vec(u)= vec(a)- vec(b), vec(v)= vec(a) + vec(b) and |vec(a)| =|vec(b)|=2 , then |vec(u) xx vec(v)| =

[vec a+vec b,vec b+vec c,vec c+vec a]=2[vec a,vec b,vec c]

A B C D E is pentagon, prove that vec A B+ vec A E+ vec B C+ vec D C+ vec E D+ vec A C=3 vec A C