Home
Class 12
MATHS
[" 10.(i) "|[x+4,2x,2x],[2x,x+4,2x],[2x,...

[" 10.(i) "|[x+4,2x,2x],[2x,x+4,2x],[2x,2x,x+4]|=(5x+4)(4-x)^(2)],[([y+k,y,,y],[y,y+k,y],[y,y,y+k])=k^(2)(3y+k)]

Promotional Banner

Similar Questions

Explore conceptually related problems

By using properties of determinants. Show that: (i) |(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)|=(5x-4)(4-x)^2 (ii) |(y+k,y,y),(y,y+k,y),(y,y,y+k)|=k^2(3y+k)

By using properties of determinants. Show that: (i) |(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)|=(5x-4)(4-x)^2 (ii) |(y+k,y,y),(y,y+k,y),(y,y,y+k)|=k^2(3y+k)

By using properties of determinants. Show that: (i) |(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)|=(5x-4)(4-x)^2 (ii) |(y+k,y,y),(y,y+k,y),(y,y,y+k)|=k^2(3y+k)

By using properties of determinants. Show that: (i) |(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)|=(5x-4)(4-x)^2 (ii) |(y+k,y,y),(y,y+k,y),(y,y,y+k)|=k^2(3y+k)

By using properties of determinants. Show that: (i) |(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)|=(5x-4)(4-x)^2 (ii) |(y+k,y,y),(y,y+k,y),(y,y,y+k)|=y^2(3y+k)

By using properties of determinants , show that : (i) {:[( x+4, 2x, 2x),( 2x,x+4, 2x),( 2x,2x, x+4) ]:}=( 5x +4) (4-x)^(2) ( ii) {:[( y+k , y , y ),( y,y+ k , y ),( y,y , y+k ) ]:} =k^(2) ( 3y +k )

By using properties of determinants , show that : (i) {:|( x+4, 2x, 2x),( 2x,x+4, 2x),( 2x,2x, x+4) |:}=( 5x +4) (4-x)^(2) ( ii) {:|( y+k , y , y ),( y,y+ k , y ),( y,y , y+k ) |:} =k^(2) ( 3y +k )

By using properties of determinants. Show that: (i) |x+4 2x2x2xx+4 2x2x2xx+4|=(5x-4)(4-x)^2 (ii) |y+k y y y y+k y y y y+k|=k^2(2ydotk)^2

{:(2x - 3y = k),(4x + 5y = 3):}