Home
Class 12
MATHS
int(0)^(a)(dx)/(x+sqrt(a^(2)-x^(2)))=(pi...

int_(0)^(a)(dx)/(x+sqrt(a^(2)-x^(2)))=(pi)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (pi)/(6)

The value of the expression (int_(0)^(a)x^(4)sqrt(a^(2)-x^(2))dx)/(int_(0)^(a)x^(2)sqrt(a^(2)-x^(2))dx)=

int_(0)^((pi)/(2))(dx)/(1+sqrt(tan x))=int_(0)^((pi)/(2))(dx)/(1+sqrt(cot x))=(pi)/(4)

int_(0)^(2)x^(2)sqrt(4-x^(2))dx=

Show that int_(0)^(1//3)(dx)/((1+x^(2))sqrt(1-x^(2))) = (pi)/(4sqrt(2))

int_(0)^(1)x.sqrt((1-x^(2))/(1+x^(2)))dx=(pi-2)/(4)

" (b) "int_(0)^(a)sqrt((a-x)/(a+x))dx=a((pi)/(2)-1)

int_(0)^(pi//2)(dx)/(1+e^(sqrt(2)cos(x+(pi)/(4)))) is equal to

int_(0)^(pi//2)(dx)/(1+e^(sqrt(2)cos(x+(pi)/(4)))) is equal to

I : int_(0)^(a)sqrt(a^2-x^(2))dx=pia^(2) II : int_(0)^(pi//4)(tan^(4)x+tan^(2)x)dx=1