Home
Class 12
MATHS
[" Period of function "f(x)=min{sin x,|x...

[" Period of function "f(x)=min{sin x,|x|}+(x)/(pi)-[(x)/(pi)]" (where [.] denotes greatest integer function) is "],[[" (A) "pi/2," (B) "pi," (C) "2 pi," (D) "4 pi]]

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=1+[cos x]x in 0<=x<=(pi)/(2) (where [.] denotes greatest integer function)

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

The function, f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

The range of the function f(x)=(sin(pi|x+1|))/(x^(4)+1) (where [.] is the greatest integer function) is

The range of the function f(x)=(sin(pi|x+1|))/(x^(4)+1) (where [.] is the greatest integer function) is

Find the period of the function f(x) = tan""(pi)/(2) [x] . Where [*] denotes greatest integer function

The function,f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

The period of the function f(x) =[6x + 7] + cos pi x - 6x , where [.] denotes the greatest integer function, is

The range of the function f(x)=(sin(pi[x^(2)+1]))/(x^(4)+1), where [.] denotes the greatest integer function,is