Home
Class 11
MATHS
[sin^(-1)y+sin^(-1)z=pi" ,an firs aifure...

[sin^(-1)y+sin^(-1)z=pi" ,an firs aifure fract "],[sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz]

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi prove that x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi, prove that: x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

If "sin"^(-1)x+"sin"^(-1)y+"sin"^(-1)z=pi , show that xsqrt(1-x^(2))+ysqrt(1-y^(2))+zsqrt(1-z^(2))=2xyz

If sin^(-1) x + sin^(-1) y + sin^(-1) z = pi" , prove that " x sqrt(1-x^(2) ) + y sqrt(1 - y^(2)) + zsqrt( 1 - z^(2)) = 2 xyz .

If sin^(-1) x + sin^(-1) y + sin^(-1) z = pi" , prove that " x sqrt(1-x^(2) ) + y sqrt(1 - y^(2)) + zsqrt( 1 - z^(2)) = 2 xyz .

if,sin^(-1)x+sin^(-1)y+sin^(-1)z=pi then prove that x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

Prove the followings : If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi then xsqrt(1-x^(2))+ysqrt(1-y^(2))+zsqrt(1-z^(2))=2xyz .

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , prove that: xsqrt(1-x^2)+ysqrt(1-y^2)+zsqrt(1-z^2)=2x y z

If sin^-1x + sin^-1y + sin^-1z = pi , prove that xsqrt(1-x^2)+y sqrt(1-y^2) + z sqrt(1-z^2) = 2xyz